Давай свой респект)
Построим сечение плоскостью, проходящей через точки Е, F и P.
Построим среднюю линию в ΔABC, EF||AC,EF || АС, а АС пл. DCА, значит,
EF || пл. DCA. Плоскость сечения пе ресечет грань DCA по прямой РК.
Т.к. плоскость сечения проходит через прямую EF, параллельную
плоскости DCA и пересекает плоскость DCA, то линия пересечения
РК параллельна прямой EF.
Построим в грани BDA отрезок FP, а в грани BDC - отрезок ЕК. 4-угольник EFOK и есть искомое сечение. EF || АС, РК || EF || АС, значит,Т.к. EF || РК и EF=PK, то EFPK - параллелограмм. Таким образом, ЕК || ЕР, ЕК - средняя линия ΔBCD,
Угол между скрещивающимися прямыми DB и СА равен 90.
Докажем это.
Построим высоту пирамиды DO. Точка О - центр правильного ΔАВС. Продолжим отрезок ВО до пересечения со стороной АС в точке М. В правильном ΔАВС ВМ — высота, медиана и биссектриса, следовательно,
Имеем, чтотогда по признаку перпендикулярности прямой и плоскости, BDM, тогда
Значит, т.к. а РК || СА и ЕК || BD, то и 4-угольник EFPK есть прямоугольник.
SEFPK=PK∙EK
Ответ: