1) Так как прямая а не касается окружности, то она пересе-
кает окружность в двух точках.
В
ОВ — медиана (т.к. АВ = ВС (по условию)) и высота (т.к. ОВ
(по условию)). Значит,
разом, ОА = ОС и таким образом точка С принадлежит окружно-
сти.
2) Пусть прямая а имеет с окружностью только одну общую точку А, но не является касательной, т.е. не перпендикулярна радиусу ОА, таким образом, из точки О можно провести к прямой перпендикуляр ОВ, не совпадающий с ОА. На продолжении отрезка АВ отложим отрезок ВС, равный отрезку АВ. Тогда, из п. 1. точки А и С лежат на окружности. Противоречие, т.к. по условию прямая а имеет с окружностью только одну общую точку.
3) Если две окружности касаются в некоторой точке А, то они имеют общую касательную в этой точке.
Пусть точки О1, О, А не лежат на одной прямой, тогда имеем ∆ОО1А. Прямая ОО1 разбивает плоскость на две полуплоскости,